Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
Add more filters










Publication year range
1.
Mol Ecol Resour ; : e13962, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38646687

ABSTRACT

Preparation of DNA polymorphism datasets for analysis is an important step in evolutionary genetic and molecular ecology studies. Ever-growing dataset sizes make this step time consuming, but few convenient software tools are available to facilitate processing of large-scale datasets including thousands of sequence alignments. Here I report "processor of sequences v4" (proSeq4)-a user-friendly multiplatform software for preparation and evolutionary genetic analyses of genome- or transcriptome-scale sequence polymorphism datasets. The program has an easy-to-use graphic user interface and is designed to process and analyse many thousands of datasets. It supports over two dozen file formats, includes a flexible sequence editor and various tools for data visualization, quality control and most commonly used evolutionary genetic analyses, such as NJ-phylogeny reconstruction, DNA polymorphism analyses and coalescent simulations. Command line tools (e.g. vcf2fasta) are also provided for easier integration into bioinformatic pipelines. Apart of molecular ecology and evolution research, proSeq4 may be useful for teaching, e.g. for visual illustration of different shapes of phylogenies generated with coalescent simulations in different scenarios. ProSeq4 source code and binaries for Windows, MacOS and Ubuntu are available from https://sourceforge.net/projects/proseq/.

2.
Trends Microbiol ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38360431

ABSTRACT

Marine phytoplankton play crucial roles in the Earth's ecological, chemical, and geological processes. They are responsible for about half of global primary production and drive the ocean biological carbon pump. Understanding how plankton species may adapt to the Earth's rapidly changing environments is evidently an urgent priority. This problem requires evolutionary genetic approaches as evolution occurs at the level of allele frequency change within populations driven by genetic drift and natural selection (microevolution). Plankters such as the coccolithophore Gephyrocapsa huxleyi and the cyanobacterium Prochlorococcus 'marinus' are among Earth's most abundant organisms. In this opinion paper we discuss how evolution in astronomically large populations of superabundant microbes (SAMs) may act fundamentally differently than it does in the populations of more modest size found in well-studied organisms. This offers exciting opportunities to study evolution in the conditions that have yet to be explored and also leads to unique challenges. Exploring these opportunities and challenges is the goal of this article.

3.
Sci Rep ; 14(1): 1373, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38228625

ABSTRACT

Recombination suppression around sex-determining gene(s) is a key step in evolution of sex chromosomes, but it is not well understood how it evolves. Recently evolved sex-linked regions offer an opportunity to understand the mechanisms of recombination cessation. This paper analyses such a region on Silene latifolia (Caryophyllaceae) sex chromosomes, where recombination was suppressed in the last 120 thousand years ("stratum 3"). Locating the boundaries of the stratum 3 in S. latifolia genome sequence revealed that this region is far larger than assumed previously-it is about 14 Mb long and includes 202 annotated genes. A gradient of X:Y divergence detected in the stratum 3, with divergence increasing proximally, indicates gradual recombination cessation, possibly caused by expansion of pericentromeric recombination suppression (PRS) into the pseudoautosomal region. Expansion of PRS was also the likely cause for the formation of the older stratum 2 on S. latifolia sex chromosomes. The role of PRS in sex chromosome evolution has been underappreciated, but it may be a significant factor, especially in the species with large chromosomes where PRS is often extensive.


Subject(s)
Evolution, Molecular , Silene , Sex Chromosomes/genetics , Plants/genetics , Chromosomes, Plant/genetics , Recombination, Genetic , Silene/genetics
4.
Mol Ecol ; 33(3): e17232, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38205900

ABSTRACT

The importance and prevalence of recent ice-age and post-glacial speciation and species diversification during the Pleistocene across many organismal groups and physiographic settings are well established. However, the extent to which Pleistocene diversification can be attributed to climatic oscillations and their effects on distribution ranges and population structure remains debatable. In this study, we use morphologic, geographic and genetic (RADseq) data to document Pleistocene speciation and intra-specific diversification of the unifoliolate-leaved clade of Florida Lupinus, a small group of species largely restricted to inland and coastal sand ridges across the Florida peninsula and panhandle. Phylogenetic and demographic analyses alongside morphological and geographic evidence suggest that recent speciation and intra-specific divergence within this clade were driven by a combination of non-adaptive allopatric divergence caused by edaphic niche conservatism and opportunities presented by the emergence of new post-glacial sand ridge habitats. These results highlight the central importance of even modest geographic isolation and short periods of allopatric divergence following range expansion in the emergence of new taxa and add to the growing evidence that Pleistocene climatic oscillations may contribute to rapid diversification in a myriad of physiographic settings. Furthermore, our results shed new light on long-standing taxonomic debate surrounding the number of species in the Florida unifoliate Lupinus clade providing support for recognition of five species and a set of intra-specific variants. The important conservation implications for the narrowly restricted, highly endangered species Lupinus aridorum, which we show to be genetically distinct from its sister species Lupinus westianus, are discussed.


Subject(s)
Lupinus , Phylogeny , Florida , Sand , Ecosystem
5.
Sci Rep ; 13(1): 21682, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38066067

ABSTRACT

X chromosome was reported to be a major contributor to isolation between closely related species-the 'large X' effect (LXE). The causes of LXE are not clear, but the leading theory is that it is caused by recessive species incompatibilities exposed in the phenotype due to the hemizygosity of X-linked genes in the heterogametic sex. However, the LXE was also reported in species with relatively recently evolved sex chromosomes where Y chromosome is not completely degenerate and X-linked genes are not hemizygous, such as the plant Silene latifolia. Recent genome sequencing and detailed genetic mapping in this species revealed a massive (> 330 Mb) non- or rarely-recombining pericentromeric region on the X chromosome (Xpr) that comprises ~ 90% of the chromosome and over 13% of the entire genome. If any of the Xpr genes are involved in species incompatibilities, this would oppose interspecific gene flow for other genes tightly linked in the Xpr. Here we test the hypothesis that the previously reported LXE in S. latifolia is caused by the lack of recombination on most of the X chromosome. Based on genome-wide analysis of DNA polymorphism and gene expression in S. latifolia and its close cross-compatible relative S. dioica, we report that the rarely-recombining regions represent a significant barrier for interspecific gene flow. We found little evidence for any additional factors contributing to the LXE, suggesting that extensive pericentromeric recombination suppression on the X-chromosome is the major if not the only cause of the LXE in S. latifolia and S. dioica.


Subject(s)
Sex Chromosomes , Silene , X Chromosome , Y Chromosome , Polymorphism, Genetic , Plants/genetics , Recombination, Genetic , Silene/genetics , Evolution, Molecular
6.
Bioessays ; 45(11): e2300111, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37694687

ABSTRACT

Sex chromosomes in plants have been known for a century, but only recently have we begun to understand the mechanisms behind sex determination in dioecious plants. Here, we discuss evolution of sex determination, focusing on Silene latifolia, where evolution of separate sexes is consistent with the classic "two mutations" model-a loss of function male sterility mutation and a gain of function gynoecium suppression mutation, which turned an ancestral hermaphroditic population into separate males and females. Interestingly, the gynoecium suppression function in S. latifolia evolved via loss of function in at least two sex-linked genes and works via gene dosage balance between sex-linked, and autosomal genes. This system resembles X/A-ratio-based sex determination systems in Drosophila and Rumex, and could represent a steppingstone in the evolution of X/A-ratio-based sex determination from an active Y system.

7.
Nanomaterials (Basel) ; 13(14)2023 Jul 16.
Article in English | MEDLINE | ID: mdl-37513093

ABSTRACT

The electrical characteristics and resistive switching properties of memristive devices have been studied in a wide temperature range. The insulator and electrode materials of these devices (silicon oxide and titanium nitride, respectively) are fully compatible with conventional complementary metal-oxide-semiconductor (CMOS) fabrication processes. Silicon oxide is also obtained through the low-temperature chemical vapor deposition method. It is revealed that the as-fabricated devices do not require electroforming but their resistance state cannot be stored before thermal treatment. After the thermal treatment, the devices exhibit bipolar-type resistive switching with synaptic behavior. The conduction mechanisms in the device stack are associated with the effect of traps in the insulator, which form filaments in the places where the electric field is concentrated. The filaments shortcut the capacitance of the stack to different degrees in the high-resistance state (HRS) and in the low-resistance state (LRS). As a result, the electron transport possesses an activation nature with relatively low values of activation energy in an HRS. On the contrary, Ohm's law and tunneling are observed in an LRS. CMOS-compatible materials and low-temperature fabrication techniques enable the easy integration of the studied resistive-switching devices with traditional analog-digital circuits to implement new-generation hardware neuromorphic systems.

8.
Front Plant Sci ; 14: 1223148, 2023.
Article in English | MEDLINE | ID: mdl-37484464

ABSTRACT

It is now well recognised that closely related species can hybridize and exchange genetic material, which may promote or oppose adaptation and speciation. In some cases, interspecific hybridisation is very common, making it surprising that species identity is preserved despite active gene exchange. The genomes of most eukaryotic species are highly heterogeneous with regard to gene density, abundance of repetitive DNA, chromatin compactisation etc, which can make certain genomic regions more prone or more resistant to introgression of genetic material from other species. Heterogeneity in local recombination rate underpins many of the observed patterns across the genome (e.g. actively recombining regions are typically gene rich and depleted for repetitive DNA) and it can strongly affect the permeability of genomic regions to interspecific introgression. The larger the region lacking recombination, the higher the chance for the presence of species incompatibility gene(s) in that region, making the entire non- or rarely recombining block impermeable to interspecific introgression. Large plant genomes tend to have highly heterogeneous recombination landscape, with recombination frequently occurring at the ends of the chromosomes and central regions lacking recombination. In this paper we review the relationship between recombination and introgression in plants and argue that large rarely recombining regions likely play a major role in preserving species identity in actively hybridising plant species.

9.
Trends Microbiol ; 31(10): 989-991, 2023 10.
Article in English | MEDLINE | ID: mdl-37500364

ABSTRACT

Marine plankton species are ecologically important, yet, it remains unclear how they originate in the ocean, where few barriers are apparent to cause the most common type of speciation - divergence in isolation. Here I discuss the use of modern evolutionary genetic approaches to shed light on longstanding questions regarding their evolution.


Subject(s)
Plankton , Plankton/genetics , Phylogeny
10.
Front Plant Sci ; 14: 1230278, 2023.
Article in English | MEDLINE | ID: mdl-37476168

ABSTRACT

Hybridisation between individuals of different species can lead to maladapted or inviable progeny due to genetic incompatibilities between diverging species. On the other hand, mating with close relatives, or self-fertilisation may lead to inbreeding depression. Thus, both too much or too little divergence may lead to problems and the organisms have to carefully choose mating partners to avoid both of these pitfalls. In plants this choice occurs at many stages during reproduction, but pollen-pistil interactions play a particularly important role in avoiding inbreeding and hybridisation with other species. Interestingly, the mechanisms involved in avoidance of selfing and interspecific hybridisation may work via shared molecular pathways, as self-incompatible species tend to be more 'choosy' with heterospecific pollen compared to self-compatible ones. This review discusses various prezygotic post-pollination barriers to interspecific hybridisation, with a focus on the mechanisms of pollen-pistil interactions and their role in the maintenance of species integrity.

11.
PLoS Biol ; 21(7): e3002191, 2023 07.
Article in English | MEDLINE | ID: mdl-37463141

ABSTRACT

We study natural DNA polymorphisms and associated phenotypes in the Arabidopsis relative Cardamine hirsuta. We observed strong genetic differentiation among several ancestry groups and broader distribution of Iberian relict strains in European C. hirsuta compared to Arabidopsis. We found synchronization between vegetative and reproductive development and a pervasive role for heterochronic pathways in shaping C. hirsuta natural variation. A single, fast-cycling ChFRIGIDA allele evolved adaptively allowing range expansion from glacial refugia, unlike Arabidopsis where multiple FRIGIDA haplotypes were involved. The Azores islands, where Arabidopsis is scarce, are a hotspot for C. hirsuta diversity. We identified a quantitative trait locus (QTL) in the heterochronic SPL9 transcription factor as a determinant of an Azorean morphotype. This QTL shows evidence for positive selection, and its distribution mirrors a climate gradient that broadly shaped the Azorean flora. Overall, we establish a framework to explore how the interplay of adaptation, demography, and development shaped diversity patterns of 2 related plant species.


Subject(s)
Arabidopsis , Cardamine , Arabidopsis/genetics , Cardamine/genetics , Genotype , Phenotype , Demography
12.
Curr Biol ; 33(12): 2504-2514.e3, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37290443

ABSTRACT

White campion (Silene latifolia, Caryophyllaceae) was the first vascular plant where sex chromosomes were discovered. This species is a classic model for studies on plant sex chromosomes due to presence of large, clearly distinguishable X and Y chromosomes that originated de novo about 11 million years ago (mya), but lack of genomic resources for this relatively large genome (∼2.8 Gb) remains a significant hurdle. Here we report S. latifolia female genome assembly integrated with sex-specific genetic maps of this species, focusing on sex chromosomes and their evolution. The analysis reveals a highly heterogeneous recombination landscape with strong reduction in recombination rate in the central parts of all chromosomes. Recombination on the X chromosome in female meiosis primarily occurs at the very ends, and over 85% of the X chromosome length is located in a massive (∼330 Mb) gene-poor, rarely recombining pericentromeric region (Xpr). The results indicate that the non-recombining region on the Y chromosome (NRY) initially evolved in a relatively small (∼15 Mb), actively recombining region at the end of the q-arm, possibly as a result of inversion on the nascent X chromosome. The NRY expanded about 6 mya via linkage between the Xpr and the sex-determining region, which may have been caused by expanding pericentromeric recombination suppression on the X chromosome. These findings shed light on the origin of sex chromosomes in S. latifolia and yield genomic resources to assist ongoing and future investigations into sex chromosome evolution.


Subject(s)
Silene , Silene/genetics , Evolution, Molecular , Sex Chromosomes/genetics , Y Chromosome , X Chromosome
13.
Genes (Basel) ; 14(3)2023 02 22.
Article in English | MEDLINE | ID: mdl-36980816

ABSTRACT

The evolution of a non-recombining sex-specific region is a key step in sex chromosome evolution. Suppression of recombination between the (proto-) X- and Y-chromosomes in male meiosis creates a non-recombining Y-linked region (NRY), while the X-chromosome continues to recombine in females. Lack of recombination in the NRY defines its main properties-genetic degeneration and accumulation of repetitive DNA, making X and Y chromosomes very different from each other. How and why recombination suppression on sex chromosomes evolves remains controversial. A strong difference in recombination rates between the sexes (heterochiasmy) can facilitate or even cause recombination suppression. In the extreme case-complete lack of recombination in the heterogametic sex (achiasmy)-the entire sex-specific chromosome is automatically non-recombining. In this study, I analyse sex-specific recombination rates in a dioecious plant Silene latifolia (Caryophyllaceae), which evolved separate sexes and sex chromosomes ~11 million years ago. I reconstruct high-density RNAseq-based genetic maps including over five thousand genic markers for the two sexes separately. The comparison of the male and female maps reveals only modest heterochiasmy across the genome, with the exception of the sex chromosomes, where recombination is suppressed in males. This indicates that heterochiasmy likely played only a minor, if any, role in NRY evolution in S. latifolia, as recombination suppression is specific to NRY rather than to the entire genome in males. Other mechanisms such as structural rearrangements and/or epigenetic modifications were likely involved, and comparative genome analysis and genetic mapping in multiple Silene species will help to shed light on the mechanism(s) of recombination suppression that led to the evolution of sex chromosomes.


Subject(s)
Silene , Silene/genetics , Evolution, Molecular , Sex Chromosomes/genetics , Y Chromosome , X Chromosome
14.
ISME J ; 17(4): 630-640, 2023 04.
Article in English | MEDLINE | ID: mdl-36747097

ABSTRACT

Marine phytoplankton play important roles in the global ecosystem, with a limited number of cosmopolitan keystone species driving their biomass. Recent studies have revealed that many of these phytoplankton are complexes composed of sibling species, but little is known about the evolutionary processes underlying their formation. Gephyrocapsa huxleyi, a widely distributed and abundant unicellular marine planktonic algae, produces calcified scales (coccoliths), thereby significantly affects global biogeochemical cycles via sequestration of inorganic carbon. This species is composed of morphotypes defined by differing degrees of coccolith calcification, the evolutionary ecology of which remains unclear. Here, we report an integrated morphological, ecological and genomic survey across globally distributed G. huxleyi strains to reconstruct evolutionary relationships between morphotypes in relation to their habitats. While G. huxleyi has been considered a single cosmopolitan species, our analyses demonstrate that it has evolved to comprise at least three distinct species, which led us to formally revise the taxonomy of the G. huxleyi complex. Moreover, the first speciation event occurred before the onset of the last interglacial period (~140 ka), while the second followed during this interglacial. Then, further rapid diversifications occurred during the most recent ice-sheet expansion of the last glacial period and established morphotypes as dominant populations across environmental clines. These results suggest that glacial-cycle dynamics contributed to the isolation of ocean basins and the segregations of oceans fronts as extrinsic drivers of micro-evolutionary radiations in extant marine phytoplankton.


Subject(s)
Haptophyta , Phytoplankton , Phytoplankton/genetics , Ecosystem , Haptophyta/genetics , Oceans and Seas , Plankton
15.
Heredity (Edinb) ; 130(1): 40-52, 2023 01.
Article in English | MEDLINE | ID: mdl-36494489

ABSTRACT

How do nascent species evolve reproductive isolation during speciation with on-going gene flow? How do hybrid lineages become stabilised hybrid species? While commonly used genomic approaches provide an indirect way to identify species incompatibility factors, synthetic hybrids generated from interspecific crosses allow direct pinpointing of phenotypic traits involved in incompatibilities and the traits that are potentially adaptive in hybrid species. Here we report the analysis of phenotypic variation and hybrid breakdown in crosses between closely-related Senecio aethnensis and S. chrysanthemifolius, and their homoploid hybrid species, S. squalidus. The two former species represent a likely case of recent (<200 ky) speciation with gene flow driven by adaptation to contrasting conditions of high- and low-elevations on Mount Etna, Sicily. As these species form viable and fertile hybrids, it remains unclear whether they have started to evolve reproductive incompatibility. Our analysis represents the first study of phenotypic variation and hybrid breakdown involving multiple Senecio hybrid families. It revealed wide range of variation in multiple traits, including the traits previously unrecorded in synthetic hybrids. Leaf shape, highly distinct between S. aethnensis and S. chrysanthemifolius, was extremely variable in F2 hybrids, but more consistent in S. squalidus. Our study demonstrates that interspecific incompatibilities can evolve rapidly despite on-going gene flow between the species. Further work is necessary to understand the genetic bases of these incompatibilities and their role in speciation with gene flow.


Subject(s)
Gene Flow , Senecio , Humans , Sicily , Senecio/genetics , Hybridization, Genetic , Phenotype , Genetic Speciation
16.
Mol Biol Evol ; 39(10)2022 10 07.
Article in English | MEDLINE | ID: mdl-36166820

ABSTRACT

How do separate sexes originate and evolve? Plants provide many opportunities to address this question as they have diverse mating systems and separate sexes (dioecy) that evolved many times independently. The classic "two-factor" model for evolution of separate sexes proposes that males and females can evolve from hermaphrodites via the spread of male and female sterility mutations that turn hermaphrodites into females and males, respectively. This widely accepted model was inspired by early genetic work in dioecious white campion (Silene latifolia) that revealed the presence of two sex-determining factors on the Y-chromosome, though the actual genes remained unknown. Here, we report identification and functional analysis of the putative sex-determining gene in S. latifolia, corresponding to the gynoecium suppression factor (GSF). We demonstrate that GSF likely corresponds to a Y-linked CLV3-like gene that is specifically expressed in early male flower buds and encodes the protein that suppresses gynoecium development in S. latifolia. Interestingly, GSFY has a dysfunctional X-linked homolog (GSFX) and their synonymous divergence (dS = 17.9%) is consistent with the age of sex chromosomes in this species. We propose that female development in S. latifolia is controlled via the WUSCHEL-CLAVATA feedback loop, with the X-linked WUSCHEL-like and Y-linked CLV3-like genes, respectively. Evolution of dioecy in the S. latifolia ancestor likely involved inclusion of ancestral GSFY into the nonrecombining region on the nascent Y-chromosome and GSFX loss of function, which resulted in disbalance of the WUSCHEL-CLAVATA feedback loop between the sexes and ensured gynoecium suppression in males.


Subject(s)
Genes, Plant , Silene , Animals , Evolution, Molecular , Plants/genetics , Sex Chromosomes , Silene/genetics , Y Chromosome
17.
J Evol Biol ; 35(12): 1696-1708, 2022 12.
Article in English | MEDLINE | ID: mdl-35834179

ABSTRACT

Evolution of a non-recombining sex-specific region on the Y (or W) chromosome (NRY) is a key step in sex chromosome evolution, but how recombination suppression evolves is not well understood. Studies in many different organisms indicated that NRY evolution often involves several expansion steps. Why such NRY expansions occur remains unclear, although it is though that they are likely driven by sexually antagonistic selection. This paper describes a recent NRY expansion due to shift of the pseudoautosomal boundary on the sex chromosomes of a dioecious plant Silene latifolia. The shift resulted in inclusion of at least 16 pseudoautosomal genes into the NRY. This region is pseudoautosomal in closely related Silene dioica and Silene diclinis, indicating that the NRY expansion occurred in S. latifolia after it speciated from the other species ~120 thousand years ago. As S. latifolia and S. dioica actively hybridise across Europe, interspecific gene flow could blur the PAR boundary in these species. The pseudoautosomal genes have significantly elevated genetic diversity (π ~ 3% at synonymous sites), which is consistent with balancing selection maintaining diversity in this region. The recent shift of the PAR boundary in S. latifolia offers an opportunity to study the process of on-going NRY expansion.


Subject(s)
Silene , Silene/genetics , Chromosomes, Plant/genetics , Genes, Plant , Recombination, Genetic , Sex Chromosomes/genetics , Evolution, Molecular
18.
Front Plant Sci ; 13: 907363, 2022.
Article in English | MEDLINE | ID: mdl-35812981

ABSTRACT

Hybridisation is well documented in many species, especially plants. Although hybrid populations might be short-lived and do not evolve into new lineages, hybridisaiton could lead to evolutionary novelty, promoting adaptation and speciation. The genus Senecio (Asteraceae) has been actively used to unravel the role of hybridisation in adaptation and speciation. In this article, we first briefly describe the process of hybridisation and the state of hybridisation research over the years. We then discuss various roles of hybridisation in plant adaptation and speciation illustrated with examples from different Senecio species, but also mention other groups of organisms whenever necessary. In particular, we focus on the genomic and transcriptomic consequences of hybridisation, as well as the ecological and physiological aspects from the hybrids' point of view. Overall, this article aims to showcase the roles of hybridisation in speciation and adaptation, and the research potential of Senecio, which is part of the ecologically and economically important family, Asteraceae.

19.
Evolution ; 76(6): 1229-1245, 2022 06.
Article in English | MEDLINE | ID: mdl-35344205

ABSTRACT

The evolution of plastic responses to external cues allows species to maintain fitness in response to the environmental variations they regularly experience. However, it remains unclear how plasticity evolves during adaptation. To test whether distinct patterns of plasticity are associated with adaptive divergence, we quantified plasticity for two closely related but ecologically divergent Sicilian daisy species (Senecio, Asteraceae). We sampled 40 representative genotypes of each species from their native range on Mt. Etna and then reciprocally transplanted multiple clones of each genotype into four field sites along an elevational gradient that included the native elevational range of each species, and two intermediate elevations. At each elevation, we quantified survival and measured leaf traits that included investment (specific leaf area), morphology, chlorophyll fluorescence, pigment content, and gene expression. Traits and differentially expressed genes that changed with elevation in one species often showed little changes in the other species, or changed in the opposite direction. As evidence of adaptive divergence, both species performed better at their native site and better than the species from the other habitat. Adaptive divergence is, therefore, associated with the evolution of distinct plastic responses to environmental variation, despite these two species sharing a recent common ancestor.


Subject(s)
Senecio , Adaptation, Physiological/genetics , Ecosystem , Genotype , Phenotype , Senecio/genetics
20.
Philos Trans R Soc Lond B Biol Sci ; 377(1850): 20210229, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35306884

ABSTRACT

Sex chromosomes or sex-determining regions (SDR) have been discovered in many dioecious plant species, including the iconic 'living fossil' Ginkgo biloba, though the location and size of the SDR in G. biloba remain contradictory. Here we resolve these controversies and analyse the evolution of the SDR in this species. Based on transcriptome sequencing data from four genetic crosses we reconstruct male- and female-specific genetic maps and locate the SDR to the middle of chromosome 2. Integration of the genetic maps with the genome sequence reveals that recombination in and around the SDR is suppressed in a region of about 50 Mb in both males and females. However, occasional recombination does occur except a small, less than 5 Mb long region that does not recombine in males. Based on synonymous divergence between homologous X- and Y-linked genes in this region, we infer that the Ginkgo SDR is fairly old-at least of Cretaceous origin. The analysis of substitution rates and gene expression reveals only slight Y-degeneration. These results are consistent with findings in other dioecious plants with homomorphic sex chromosomes, where the SDR is typically small and evolves in a region with pre-existing reduced recombination, surrounded by long actively recombining pseudoautosomal regions. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.


Subject(s)
Chromosomes, Plant , Ginkgo biloba , Chromosomes, Plant/genetics , Evolution, Molecular , Ginkgo biloba/genetics , Plants/genetics , Sex Chromosomes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...